
N90-27322

Construction of Dynamic Stochastic Simulation Models

Using Knowledge-Based Techniques

M. Douglas Williams

Advanced Technology, Inc.
555 Sparkman Dr., Suite 454

Huntsville, AL 35816

Sajjan G. Shiva

Computer Science Department
University of Alabama in Huntsville

Huntsville, AL 35899

ABSTRACT

Over the past three decades, computer-based simulation models have

proven themselves to be cost-effective alternatives to the more structured

deterministic methods of systems analysis. During this time, many

techniques, tools and languages for constructing computer-based

simulation models have been developed. More recently, advanced in

knowledge-based system technology have led many researchers to note the

similarities between knowledge-based programming and simulation

technologies and to investigate the potential application of knowledge-based

programming techniques to simulation modeling.

This paper discusses the integration of conventional simulation

techniques with knowledge-based programming techniques to provide a

development environment for constructing knowledge-based simulation

models. A comparison of the techniques used in the construction of

dynamic stochastic simulation models and those used in the construction of

knowledge-based systems provides the requirements for the environment.

This leads to the design and implementation of a knowledge-based
simulation development development environment.

These techniques have been used in the construction of several

knowledge-based simulation models including the Advanced Launch

System Model (ALSYM).

1.0 INTRODUCTION

Knowledge-based simulation extends the set of tools available to the

simulation modeler by incorporating techniques from the field of artificial

intelligence. [Smith et al 1988] In the context of this research, simulation

techniques are limited to discrete-event simulation methods for

constructing dynamic stochastic simulation models. The techniques from

439



artificial intelligence that have proved most useful are broadly classified as
knowledge-based programming techniques, hence the name knowledge-
based simulation. There are many similarities between knowledge-based
programming techniques and conventional discrete-event simulation
techniques, as well as some important differences.

The most important similarity is the separation of the domain problem-
solving knowledge from the control strategy applying this knowledge to
solve some problem instance in the domain. In knowledge-based
programming, this knowledge is represented in the form of rules or logical
statements. The control strategy is implemented by an inference engine
which repeatedly chooses the most appropriate of these rules or logical
statements based on the current state of the system. The control strategy
then performs the actions specified by that rule or logical statement to effect
a change in the state of the system. In discrete-event simulation models,
the knowledge is represented in the form of events and the control strategy
repeatedly chooses the next imminent event, i.e. the one which is to occur
next in simulated time, advances the simulation clock to the time the
imminent event is scheduled to occur, and executes the code associated
with the event to effect a change in the state of the system. In both cases,
this allows the programmer (i.e. knowledge engineer or simulation
modeler) to concentrate on developing the domain knowledge without
having to worry about the exact order in which the individual chunks of
knowledge are applied in solving a particular problem instance.

Another important similarity is that both fields use similar
methodologies for representing the current state of the system. This is
most often some variation of the entity-attribute approach. The entity-
attribute approach was developed as a modeling technique in which the
system is decomposed into its constituent components which are called
entities. Each entity is then modeled in terms of its attributes where each
attribute represents some aspect of the entity. In knowledge-based systems,
the entity-attribute approach serves as the basis for the frames knowledge
representation technique which extends the entity-attribute approach by
modeling attributes in terms of their facets. Each facet of an attribute
represents a different aspect of the attribute, and may include precedural
attachments called daemons which are activated in response to references
to the attribute. In addition, operations on an entity are specified as
procedural attachments on the entity itself and are activated in response to
messages directed at the entity. A programming system based on frames is
called an object-oriented programming system.

Finally, an iterative development methodology is regarded by both fields
as the appropriate approach to system development. In discussing his
methodology of simulation model development, Shannon stated that "the
evolutionary nature of model building is inevitable and desirable"
[Shannon 1975]. This is comparable to the accepted knowledge engineering
methodology where the "system evolves by proceeding from simple to
increasingly hard tasks, improving incrementally the organization and
representation of knowledge" [Hayes-Roth 1983]. The iterative development

440



methodology has been extended by knowledge-based development
environments to provide rapid prototyping of knowledge-based systems.

Figure 1 summarizes the similarities between conventional discrete-
event simulation techniques and knowledge-based programming
techniques.

One important difference between knowledge-based programming
techniques and conventional discrete-event simulation techniques is the
development environments within which each is typically implemented.
Knowledge-based programming tools and languages are typically
implemented using, or as extensions to, symbolic programming languages
with interactive development environments on personal workstations,
whereas conventional discrete-event simulation tools and languages are
typically implemented using, or as extensions to, conventional
programming languages using modest development environments
lbrovided by traditional mini-computer/main-frame operating systems. The
fact that these conventional programming languages can be efficiently
translated into executable machine code while the symbolic programming
languages rely on either an interpretive execution environment or a non-
conventional hardware architechure has hindered the integration of
knowledge-based techniques into conventional programming
environments, and vice versa.

The interactive development environments within which knowledge-
based languages and tools exist rely on the interpretive nature of symbolic
programming languages to allow changes in the program to be
immediately reflected in the system being developed. This allows
knowledge-based systems to support the iterative development method, not
only at a macro level, but at all levels of development. This is the basis of
the popularity of the use of rapid prototyping techniques in the development
of knowledge-based systems.

Conventional Discrete-Event
Simulation Techniques

Knowledge-Based
Programming Techniques

• Domain knowledge separate
from control strategy

• Domain knowledge separate
from control strategy

• Entity-attribute data °
organization

0bject-oriented data
organization with active
objects

• Iterative development • Iterative development with
rapid prototyping

Figure 1. Similarities Between Conventional Discrete-Event
Simulation and Knowledge-Based Programming Techniques

441



Another important difference between knowledge-based programming
techniques and conventional discrete-event simulation techniques is their
ability to deal with the concept of time within their respective domains. The
concept of time is an inherent part of dynamic simulation models. The
discrete-event simulation techniques that have been developed to construct
such models are centered around providing an appropriate abstraction of
time. On the other hand, the inferencing mechanisms used within
knowledge-based systems, e.g. rule-based or logic-based approaches, are
typically confounded by time-varying data. Dealing with these problems
requires the specification of additional meta-knowledge which defines the
dynamic effects of changes to time-varying data used in deducing other
data.

Figure 2 summarizes the differences between conventional discrete-
event simulation techniques and knowledge-based programming
techniques.

Conventional discrete-event simulation techniques and knowledge-based
programming techniques complement each other when integrated into a
unified knowledge-based simulation development environment. The
knowledge-based programming techniques provide the enhanced data
abstraction capabilities associated with object-oriented programming
techniques, rule-based or logic-based inferencing capabilities for dealing
with complex decision processes, and a superior development environment
for supporting incremental development. The conventional discrete-event
simulation techniques provide the basic entity-attribute approach for data
abstraction and the capabilities to deal with time-varying data within the
domain.

2.0 Design of a Knowledge-Based Simulation Environment

There are many techniques from conventional simulation modeling and

knowledge-based programming which are applicable to knowledge-based

simulation modeling. Applicable conventional simulation modeling
techniques include:

• the entity-attribute approach,

• the event-scheduling control strategy, and

• the process-interaction control strategy.

442



Conventional Discrete-Event
Simulation Techniques

Knowledge-Based
Simulation Techniques

• Event scheduling approach
to control

• Rule-based or logic-based
inferencing

• Time central concept in
control strategy

• Time normally not used in
inferencing

• Quantitative models (i.e.,
primarily numeric data)

• Qualitative models (i.e.,
primarily symbolic data)

• Model data probabilistic • Model data have associated
certainty factors

Model results probabilistic, °
model is run many time and results
distributions computed

Model results deterministic,
may have associated

certainty factors

Figure 2. Differences Between Conventional Discrete-Event
Simulation and Knowledge-Based Programming Techniques

Applicable knowledge-based program-ming techniques include:

• object-oriented programming,

• rule-based programming,

• forward-chaining inferencing, and

• backward-chaining inferencing.

These techniques must be analyzed to eliminate redundancy and to insure
compatability when integrated into a knowledge-based simulation
development environment.

The entity-attribute approach and object-oriented programming both
provide for the representation of data in their respective domains. Object-
oriented programming provides all of the techniques needed to represent
model entities, their attributes, and operations on them in a unified
manner. Object-oriented programming therefore provides all of the
capabilities of the entity-attribute approach and extends it to include
procedural operations on entities.

Knowledge-based simulation models must be able to deal adequately
with the concept of time. This requires the inclusion of a simulation clock
and a mechanism for maintaining its value. The event-scheduling control

443



strategy is the obvious choice for providing these timing functions. An
alternative approach would be to put the simulation clock on the blackboard
and allow rules to access and/or update its value. This would allow rule-
based programming to be used for maintaining the value of the simulation
clock. This approach, however, lacks the clarity and efficiency of the event-
scheduling approach.

The process-interaction approach unifies the event-scheduling control
strategy and object-oriented programming. A process represents an active
entity in the model and is represented in the same manner as any other
entity using object-oriented programming. In addition to having attributes
and operations specified, a process has associated events which define its
dynamic behavior. Individual events within a process may communicate
via the attributes of its associated process instance.

Rule-based programming is used to model complex decision-making
processes within a knowledge-based simulation model. All decisions are
assumed to be instantaneous in simulated time, therefore rules must not
use the simulation clock in any of their preconditions and must not alter
the value of the simulation clock in any of their actions. This precludes the
possibility of any conflicts between the event-scheduling control strategy
and the inferencing control strategy. Any event may initiate an inferencing
procedure to model a decision-making process, and any rule action may
schedule events to be executed or modify the future event list to effect
changes in future event execution.

Either forward-chaining or backward-chaining, or both, may be used in
implementing an inferencing control strategy. It is possible to structure
rules such that the same rule may be used in both forward-chaining and
backward-chaining inferencing. However, because backward-chaining
requires the ability to identify the facts that a rule's actions may place on
the blackboard, this can only be done by restricting the actions that a rule is
allowed to perform. The prototype development environment is therefore
restricted to using a forward-chaining inferencing mechanism in its
inference engine.

The language for the knowledge-based simulation model development
environment is based on the Common Lisp programming language. There
are several reasons for this choice:

. Common Lisp provides features to support the embedding of new

language features within the language, most notably, the macro

facility which allows new special forms to be added to the language.

. There are object-oriented programming systems available within
Common Lisp implementations. One of these can serve as the basis

for the object-oriented programming system.

3. There are sophisticated development environments available which

support incremental development and rapid prototyping.

444



The Common Lisp implementation used is Symbolics Common Lisp which

runs on the Symbolics Lisp Machine.

The language elements that comprise the knowledge-based simulation

development environment are divided into five protocols:

. The modeling protocol provides the language elements for the object-

oriented programming system for the representation of model
elements.

. The simulation protocol provides the language elements to extend the

modeling protocol for the definition of the dynamic simulation
elements.

3. The simulation control protocol provides the language elements for

the control of the dynamic simulation elements.

. The inferencing protocol provides the language elements for the rule-

based programming techniques for the modeling of complex decision

processes.

5. The inferencing control protocol provides the language elements for

the control of the forward-chaining inferencing mechanism.

Each of these protocols will be discussed in the following sections.

2.1 Modeling Protocol

The modeling protocol provides the static modeling language elements.

The modeling protocol is provided by the Flavors package which is an

object-oriented programming package implemented on top of Common

Lisp. A complete description can be found in the Symbolics Common Lisp

Language Concepts Vol. 2A. [BromIey et al 1987; Symbolics 1988a;

Symbolics 1988b]

The object-oriented programming package provided by the Flavors

package uses terminology that differs from similar packages. Entities

classes are represented by flavors. A flavor serves as a template for all

objects in the corresponding entity class. Each object is an instance of a

flavor. The entity attributes for a flavor are represented by instance
variables. Each instance of a flavor has its own values for its instance

variables, and the values of these instance variables define the state of the

instance. Each instance variable may have a default initial value and may

be defined to be inittable, i.e., its value may be specified when an instance is

created; readable, i.e., its value may be read via a function call; and/or

writable, i.e., its value may be updated via a call to the serf macro. There
are no class variables for a flavor, though the same concept may be easily

445



emulated using the property list of the symbol naming the flavor. [Bromley
et al 1987;Symbolics 1988a;Symbolics 1988b]

The operations for the entity class represented by a flavor are defined as
methods on the flavor. A method is a function associated with a flavor.
When the method is activated for a specific flavor instance, the variable
self is bound to the instance and all of the instance variables for the
instance are available to the method as local variables. [Bromley et al 1987;
Symbolics 1988a;Symbolics 1988b]

One of the main strengths of the Flavors package is the ability to
combine existing flavors with newly defined flavors. When defining a
flavor, a list of component flavors whose characteristics are to be included
in the new flavor is specified. The instance variables and methods of the
component flavors are inherited by the new flavor. [Bromley et al 1987;
Symbolics 1988a;Symbolics 1988b]

2.2 Simulation Protocol

The simulation protocol provides the dynamic modeling language

elements. These language elements provide for the definition of processes

and the events which implement their actions. The protocol also provides

language elements for process creation, interprocess communication, and

other operations on processes and events. The simulation protocol

implements a process interaction approach to discrete event simulation.

A process represents an active entity in the reference system. Processes

may have instance variables to represent attributes unique to each process

instance like other entities. A process is defined using the defprocess
macro. A call to this macro has the following form:

defprocess name
&rest instance-variables

where name is a symbol that is the name of the process being defined, and
each instance-variable is the name of an attribute of the process and has

the same format as an instance variable specification in a flavor definition.

The primary action of the macro is to define a flavor whose name is name

based on the abstract flavor process. The macro also defines a predicate to

recognize instances of the process. The name of this predicate function is

the print name of name with "-P" appended.

The simulation protocol has two mechanisms for creating process

instances. The more primitive mechanism for creating a process instance

is the create-process function. This function creates a new process

instance and optionally initializes some instance variables in the newly

created process instance. A call to this function has the following form:

create-process name
&rest initializations

446



where name is the name of the process of which to create an instance, and

the i n i t i a 1 i za t i on s are optional keyword/value pairs specifying initial

values for process instance variables. The newly created process instance
is returned as the value of the function call.

Most processes have an initial event which is scheduled to execute as the

first event after the process is created. The simulation protocol provides an

in it iate macro which simplifies the normal process of process creation

and initial event scheduling. The initiate macro creates a new process

instance, optionally initializes some instance variables in the newly created
process instance, and schedules its initial event for execution at some

specified simulated time. A call to this macro has the following form:

initiate time name

&rest initializations

where time is the simulated time at which the initial event of the process is
to be executed or :now if the initial event is to be scheduled to execute

immediately, name is the name of the process to be initiated, and the

initializations are optional keyword/value pairs specifying initial

values for process instance variables. Note that the name argument is not
evaluated. The newly created process instance is returned as the value of
the macro call.

The actions of an active entity are specified as events within the process

representing the active entity. Each event has a parameter list and accepts

argument like a normal Common Lisp function, but rather than being

executed immediately in response to a function call their executions are

scheduled and performed in their proper sequence by the event-scheduling

control strategy. Note that a process may also have normal methods

defined on them using the defmethod macro. An event is defined using

the defevent macro. There are two types of events: process events and

non-process events. As the names suggest, a process event is an event

which is associated with some process, whereas a non-process event is not.

A call to this macro has the following form:

defevent

(name

&optional process

&key :initial-event)
lambda-list

&body body

where name is a symbol that is the name of the event being defined,
process is the name of the process with which this event is associated or

nil (the default) for a non-process event, the key :init ial-event is true if

this event is the event to be scheduled when the associated process is

initiated and nil (the default) otherwise. The lambda-list specifies the

arguments to this event and may contain any structure valid in a function

447



lambda list. The body specifies the forms that are to be executed as the body
of this event.

There are often cases where an event executing within a process

instance is required to communicate with another process instance. This

may be to read or update an instance variable within the referenced process
instance or to schedule an event within the referenced process instance. A

common example of this occurs when there is some initial handshaking

operations that must be performed between a process instance and its

initiator. The with-process macro provides a convenient mechanism for

performing these actions. A call to this macro has the following form:

with-process

(process

&optional

&body body

instance-form)

where process is the symbol naming the process whose instance is

required, and instance-form is an optional form which, when evaluated,

returns the desired process instance. The body specifies the forms that are

to be evaluated with process bound to the referenced process instance. If an

instance-form is not given, or is nil, then process is bound to the

ancestor process of the indicated type.

The final language element provided by the simulation protocol is a

macro to iterate over the events defined within a process. The do-process-
events macro provides this iteration capability. A call to this macro has the

following form:

do-process-events

(var process

&optional

&body body

resul t-form)

The effect of a call to the do-process-events macro is to evaluate the

forms in body with the symbol vat bound to successive events in process.

After all of the events have been exhausted, result-form, which defaults to

nil, is evaluated and the result returned as the value of the call.

2.3 Simulation Control Protocol

The simulation control protocol provides the language elements for the

creation and manipulation of simulation environments. The most

important elements of the simulation environment are the future event list

and the simulation clock. A simulation environment provides the data

structures for the process interaction control strategy of a simulation

model. Multiple simulation environments may exist simultaneously either
in a hierarchical (i.e., nested) manner or as independent environments

within separate Common Lisp dynamic referencing environments.

448



A simulation environment automatically exists within each

independent Common Lisp dynamic referencing environment. To create a
new simulation environment within an existing simulation environment,
the with-new-simulation-environment macro is used. A call to this

macro has the following form:

wit h-new- s imu Iat ion-e nvi ronment

&body body

where body contains the forms needed to implement the encapsulated

simulation model. These forms would normally include one or more

process initiations followed by a start-simulation function call (see
below).

A simulation environment can be reset to its initial state using the

re set-simulat ion-environment function. A call to this function has the

following form:

reset-simulation-environment

The effect ofa reset-simulation-environment function call is to clear the

future event list by releasing all of the previously scheduled events and to
reset the simulation clock to zero. The effect of the call is limited to the

innermost simulation environment in the current Common Lisp dynamic

referencing environment.

The process interaction control strategy is initiated within a simulation

environment using the s t art- s imu i at ion function. A call to this function

has the following form:

start-simulation

The effect of a start-simulation function call is to begin the event

scheduling control strategy of removing event notices from the future event

list,advancing the simulation clock, and executing the corresponding event

code. This process continues until either the future event listis empty or a

dynamic throw is executed whose catch is not within the dynamic

environment of the control strategy. The effect of the call is limited to the

innermost simulation environment in the current Common Lisp dynamic

referencing environment.

The schedule function calls the scheduler to add a new event notice to

the future event list representing the future execution of an event. A call to

this function has the following form:

schedule

time event process-instance

&rest arguments

449



where time is a number representing the time the event is to be scheduled

or :now if the event is to placed at the head of the future event list to be
executed at the current simulation time as the next event, event is the

name of the event to be scheduled, process-instance is the process

instance which the scheduled event is to be associated, and arguments are

the actual arguments to the scheduled event. The effect of the call is that an

event notice is created representing the future event, and this event notice is

placed at the correct position on the future event list.

It is sometimes necessary within a simulation model to make decisions

based on already scheduled events, or to remove or reschedule such events.

The do-scheduled-events macro provides a mechanism for doing this. A

call to this macro has the following form:

do-scheduled-events

(var &optional

event-list

&body body

result-form)

The effect of a call to the do-scheduled-events macro is to evaluate the

forms in body with the symbol var bound to successive event notices on
event-list, which defaults to the future event list in the current
simulation environment. After all of the event notices have been

exhausted, result-form, which defaults to nil, is evaluated and the result
returned as the value of the call.

2.4 Inferencing Protocol

The inferencing protocol provides the language elements for the rule-based

modeling of complex decision-making processes. These language elements

provide for the definition of rulesets and the rules specifying their problem-

solving knowledge. The protocol also provides language elements for

ruleset creation and other operations on rulesets ans rules. The

inferencing protocol implements a rule-based programming system.

The basic elements of the inferencing protocol are rules and rulesets. A

rule is a single piece of problem-solving knowledge expressed as a set of

preconditions for the application of the rule and a set of actions that are to

be performed when the rule is executed. Related rules are grouped together

to form rulesets which may be activated as needed in response to problem-

solving demands.

A ruleset represents a body of problem-solving knowledge. A ruleset
may also have instance variables to represent attributes unique to each

ruleset instance. A ruleset is defined using the defruleset macro. A call

to this macro has the following form:

450



defruleset name

&rest instance-variables

where name is a symbol that is the name of the ruleset being defined, and
each instance-variable is the name of an attribute of the ruleset and has

the same format as an instance variable specification in a flavor definition.

The primary action of a call to the macro is to define a flavor whose name is
name, based on the abstract flavor ruleset. The macro also defines a

predicate to recognize instances of the ruleset. The name of this predicate

function is the print name of the name with "-P" appended.

A ruleset instance must be created to perform inferencing using the

rules in the ruleset. The activate macro creates a new ruleset instance

optionally initializes some instance variables in the newly created ruleset
instance, and makes the rules in the ruleset eligible for firing by adding the

newly created ruleset instance to the list of active rulesets. A call to this

macro has the following form:

activate name

&rest initializations

where name is the name of the ruleset to be activated, and the

i n i t i a 1 i za t ion s are optional keyword/value pairs specifying initial

values for ruleset instance variables. Note that the name argument in an

act ivate macro call is not evaluated. The newly created ruleset instance

is returned as the value of the macro call.

A rule represents a single piece of problem-solving knowledge and is

associated with a particular ruleset. The specification of a rule includes a

set of precondition patterns that are to be matched against facts on the
blackboard and a set of actions which are forms to be evaluated in an

environment binding the variables in the precondition patterns to their

matching elements in the matched facts. A rule is defined using the
defrule macro. A call to this macro has the following form:

defrule (name ruleset)

&rest preconditions-and-actions

where name is the name of the rule being defined, ruleset is the name of

the ruleset with which this rule is associated, and the preconditions-

and-actions have the following form:

{preconditions} *
-->

{actions} *

where each precondition is a pattern to be matched against facts on the

blackboard, and the actions are the forms to be evaluated in an

environment binding the variables in the precondition patterns to their

matching elements in the match facts when the rule is executed.

451



The final language element provided by the inferencing protocol is a
macro to iterate over the rules defined within a ruleset. The do-ruleset-

rules macro provides this iteration capability. A call to this macro has the
following form:

do-ruleset-rules

(var ruleset

&optional

&body body

result -form)

The effect of a call to the do-ruleset-rules macro is to evaluate the forms

in body with the symbol vat bound to successive rules in ruleset. Note

that the ruleset argument is evaluated. This is to allow dynamic
specification of the ruleset name. After all of the rules have been

exhausted, result-form which defaults to nil is evaluated and the result
returned as the value of the call.

2.5 Inferencing Control Protocol

The inferencing control protocol provides the language elements for the

creation and manipulation of inferencing environments. The most
important elements of the inferencing environment are the blackboard and

the agenda. An inferencing environment provides the data structures for

the forward-chaining inferencing control strategy for the rule-based

components of a knowledge-based simulation model. Multiple inferencing

environments may exist simultaneously either in a hierarchical (i.e.,

nested) manner or as independent environments within separate Common
Lisp dynamic referencing environments.

An inferencing environment automatically exists within each

independent Common Lisp dynamic referencing environment. To create a

new inferencing environment within an existing inferencing environment,
the with-new-inferencing-environment macro is used. A call to this

macro has the following form:

with-new-inferencing-environment

&body body

where body contains the forms needed to implement the encapsulated rule-
based inference system. These forms would normally include one or more

ruleset activations and one or more assertions followed by a start-
inferencing function call (see below).

An inferencing environment can be reset to its initial state using the
reset-inferencing-environment function. A call to this function has the
following form:

reset-inferencing-environment

452



The effect of a reset-inferencing-environment function call is to clear

the blackboard by removing all of the previously asserted facts and to clear

the agenda by removing all of the previously triggered rule instances. The
effect of the call is limited to the innermost inferencing environment in the

current Common Lisp dynamic referencing environment.

The forward-chaining inferencing control strategy is initiated within an

inferencing environment using the start-inferencing function. A call to

this function has the following form:

start-inferencing

The effect of a start-inferencing function call is to begin the forward-

chaining control strategy of matching asserted facts against preconditions

of the rules in the active rulesets to form the conflict set, choosing the most

appropriate of these rule instances for application, and applying the rule in

the appropriate ruleset instance. This process continues until either there
are no rule instances in the conflict set after the matching phase of the

forward-chaining inferencing algorithm has been executed or a dynamic
throw is executed whose catch is not within the dynamic environment of

the control strategy. The effect of the call is limited to the innermost

inferencing environment in the current Common Lisp dynamic

referencing environment.

A fact is a statement about the domain that has either been explicitly

given by the knowledge-engineer in the code of the program or by the user

in response to some action by the program or has been deduced from these
basic facts using the rules in the knowledge base. A fact is represented by a

list structure whose structure is determined by the knowledge engineer.
The blackboard is a data structure which contains the facts that have been

asserted in the current inferencing environment. The add-fact function

adds a new fact to the blackboard. A call to this function has the following
form:

add-fact fact

where fact is the list structure represention of the fact to be added to the
blackboard.

Within the actions of a rule, it is often necessary to remove the fact

which matched a particular precondition pattern. The remove-matching-
fact function removes from the blackboard the assertion representing the

fact that matched a given precondition pattern. A call to this function has

the following form:

remove-matching-fact n

where n is the number of the precondition pattern whose matching fact is to
be removed from the blackboard.

453



It is sometimes necessary to remove a number of related facts from the

blackboard. The remove-assertions function removes existing facts from

the blackboard that match a given pattern. A call to the remove-
assert ions function removes some facts from the blackboard. A call to

this function has the following form:

remove-assertions pattern

where pattern is a list structure representation of a pattern to match

against facts on the blackboard. All facts on the blackboard matching

pat c ern are removed.

3.0 CONCLUSION

The knowledge-based simulation development language presented has been

used in the construction of several knowledge-based simulation models.
These include:

The Advanced Launch System Model (ALSYM) which includes an
end-to-end model of the entire Advanced Launch System (ALS)

industrial infrastructure.

The Space Station Freedom Model which provides system available

measures for the operational phase of the space station and its

support infrastructure.

• The Software Development Process Model which models the

performance of a software development organization.

These techniques have provided a capability to develop early prototype

models in support of trade studies during the concept development phase of

projects as well as detailed models to provide decision supportfor managers

of operational systems.

REFERENCES

Banks, J. and Carson, J. S., II, Discrete-Event System Simulation,

Prentice-Hall, 1984

Bromley, H. and Lamson, R., LISP Lore: A Guide to Programming the

LISP Machine, Second Edition, Kluwer Academic Publishers, 1987

Brownston, L., Farrell, R., Kant, E., and Martin, N., Programming Expert

Systems in OPS5, Addison-Wesley, 1985

454



Ferguson, E.,"Using Scheme for Discrete Simulation", Texas Instruments
Engineering Journal, Vol. 3, No. 1, Jan.-Feb. 1986

Hayes-Roth, F., Waterman, D. A., and Lenat, D. B., Building Expert

Systems, Addison-Wesley, 1983.

Kerckhoffs, E. J. H. and Vansteenkiste, G. C., "The Impact of Advanced

Information Processing on Simulation An Illustrative Review",

Simulation, Jan. 1986, Vol 46, No. 1, pp. 17-26

Kulikowski, C. A., "Artificial Intelligence, Modeling, and Simulation",
Artificial Intelligence, Expert Systems and Languages m Modeling and

Simulation, North-Holland, Jun. 1987, pp. 5-13

Murray, K. J. and Sheppard, S. V., "Knowledge-Based Simulation Model

Specification", Simulation, Mar. 1988, Vol. 50, No. 3, pp. 112-119

O'Keefe, R. M., "The Role of Artificial Intelligence in Discrete-Event

Simulation", Artificial Intelligence, Simulation, and Modeling, John Wiley

and Sons, 1989, pp. 359-380

Round, A., "Knowledge-Based Simulation", The Handbook of Artificial

Intelligence, Vol. IV, Addison-Wesley, 1989, pp. 417 - 518

Shannon, R. E., System Simulation: The Art and Science, Prentice Hall,

New Jersey, 1975

Shannon, R. E., Mayer, R., and Adelsberger, H. H., "Expert Systems and
Simulation", Simulation, Jun. 1985, Vol. 44, No. 6

Smith, H.R. and McVicar, K., "Knowledge-Based Simulation with

Frameworks", Proc. of Multiconference 1988, Feb. 1988

Steele, G. L., Jr., Common LISP: The Language, Digital Press, 1984

Symbolics Common LISP - Language Concepts, Symbolics, Inc., 1988

Symbolics Common LISP - Language Dictionary, Symbolics, Inc., 1988

Waterman, D. A., A Guide to Expert Systems, Addison-Wesley, 1985

Widman, L. E. and Loparo, K. A., "Artificial Intelligence, Simulation, and

Modeling: A Critical Survey", Artificial Intelligence, Simulation, and

Modeling, John Wiley and Sons, 1989, pp. 1-44

Williams, M. D. and Smith, M. E., "Knowledge-Based Simulation", Proc. of

the Second International Software for Strategic Systems Conference, Oct.

1988

455




